Winter bird assemblages across an aridity gradient in south-west Western Australia

D T Bell^{1,2}, R C Bell¹ & W A Loneragan³

¹ 5 The Rise, Mindarie, WA 6030, Australia ² corresponding author: ⊠ dtrcbell@iinet.net.au ³School of Plant Biology, The University of Western Australia, Crawley, WA 6900, Australia

Manuscript received August 2007; accepted December 2007

Abstract

Avian assemblages of eight sites located along a 625km gradient across south-west Western Australia were recorded during the winters of 2004 and 2006. The total number of species observed was 92, with 10 sighted only in 2004, 14 sighted only in 2006, with the remaining 68 sighted during both survey periods. Measures of site species richness, diversity and evenness were determined for each site and for each sampling year and the turnover rates of avifauna species categorized as either sedentary or locally nomadic versus either migratory or nomadic between years were determined. The similarity between avifauna assemblages was determined by Detrended Correspondence Analysis and related to environmental data by correlation analysis and analysis of variance. Assemblage similarity between years at each site was greater than similarity between adjacent sites in the same year. However, avifauna similarity was related more to average annual precipitation than geographic proximity and was secondarily influenced by the presence of flowering trees and shrubs. There was no relationship between position on the geographic gradient and bird assemblage richness, diversity, evenness or dominance. Turnover rates between years of sampling of the regionally-nomadic and migratory species were significantly higher than sedentary and locally-nomadic species. A number of species showed discontinuous distributions in the central Wheatbelt, further documenting the impact of clearing on the avifauna of southwestern Western Australia.

Keywords: Avifauna richness, diversity, evenness and dominance, detrended correspondence analysis, inter-annual variation, species turnover rates, aridity gradient, south-west Western Australia

Introduction

The south-west corner of Western Australia has long been recognised as forming a natural floristic (Beard 1990) and faunal (Kikkawa & Pearse 1969) region. The extended geologic history and isolation from other similar climatic regions has allowed a long period for the Western Australian fauna to evolve close interactions with the vegetation and other organisms. However, Beard's (1990) South-West Botanical Province is not a strictly uniform region of vegetation and gradually changes, structurally and floristically, to the east and north. The vegetation changes have been related to the gradually declining rainfall (Beard 1990). Although Kikkawa & Pearse's (1969) South-western Faunal Subregion overlaps this botanical province, it is not well known whether the avifauna assemblages also show such gradient changes. Eastern and northern Australian studies on bird assemblages have generally shown poor cohesion between the vegetational communities and avifaunal assemblages (Woinarski et al. 1988; Recher et al. 1991). However, Abbott (1999), using original distributions by Storr (1991), shows some evidence that the Western Australian central Wheatbelt once had higher species richness than regions of the Jarrah and

Wandoo forests to the west and more arid regions to the east.

The objectives of this study were: 1) to document the winter assemblages of the avifauna in a range of sites along a gradient of increasing aridity; 2) to consider variation between two different years of sampling; 3) to relate patterns of avifauna distribution to particular environmental conditions.

Methods

Study sites

Observations were made at eight avifauna-sampling sites (Fig. 1). The end points of the sampling gradient were approximately 625km apart (825km by road) and covered an annual mean precipitation range from 1050mm at Mundaring to 230mm at Leinster (Table 1). Although the sites were on average 118 ± 64 km apart, there was a large decrease in rainfall from Mundaring to Durokoppin and then a more gradual decrease in total annual precipitation over the five remaining sampling sites. Local rainfall in the three months (April–June) preceding the 2004 sampling was significantly higher than the corresponding period preceding the 2006 sampling (paired t = 2.80, p ≤ 0.05).

Although the vegetation species composition varied

[©] Royal Society of Western Australia 2007

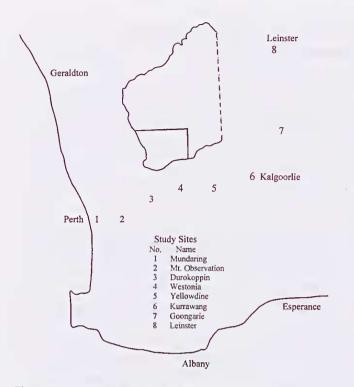


Figure 1. Approximate geographic position of the eight avian sampling sites in south-west Western Australia.

between sites, all sites chosen had a single canopy stratum dominated by eucalypt species, an understorey of shrubs and a litter layer that indicated a several-year period without fire (Table 2). Care was made to sample an area typical of the regional vegetation. A subjective assessment of the relative availability of flower resources was made during each sampling.

Sampling

At each avifauna-sampling site, bird observations were recorded over six separate time periods consisting of three early morning and three late afternoon sessions, each of two hours duration. All field observations were undertaken by the first two authors working together to share observation and recording. The area sampled was estimated using pedometer walking distances and a lateral observation region of 25 m on each side of the walking line. Census data were obtained by walking slowly forward, stopping to identify birds observed by sight and then proceeding when all birds at that location were recorded. Using this technique, area of sampling was determined to be between 15 and 21 ha for the range of sampling sites (Table 1).

Preliminary analysis of the bird richness data indicated that the total of 12 hr of observation was sufficient to maximize completeness of the sample as 90% of the final site richness value was always achieved after ≤8 hr and 95% after ≤10 hr of observation. The precautions of Watson (2003) were also followed to ensure the sampling area was representative of the regional vegetation and sampling effort was comparable between study sites. All field sampling was carried out between 14 July and 12 August 2004 and 16 July and 22 August 2006, proceeding sequentially from Mundaring to Leinster in each sampling year. Windy and rainy days were avoided, so the time required to complete the three morning and three afternoon samples took between three and five days at each site.

Site avifauna richness was the total number of bird species recorded at each site during the three-day sampling period. Three measures of site species heterogeneity were calculated. The Shannon indices of diversity (H' = $-\Sigma p_i \log_{10} p_i$) and evenness (J' = H'/H'_{max}) and the Simpson index of dominance $(D = \Sigma p_i^2)$, where "p," equals the proportion for the ith species, combine information on both species richness and species evenness (Peet 1974). The Shannon indices are biased towards species richness, while the Simpson index of dominance is biased toward the abundance of the most common species (Magurran 1988). Statistical comparisons between the sample species diversity values employed the method of Hutcheson (1970). Spearman's rank correlation tests were used to compare patterns of avifauna assemblage characteristics. Site richness, evenness and dominance between-year comparisons were made by correlation analysis.

The total number of observations recorded during the 12 hr of sampling was determined and the percentage recorded for each species provided the matrix of data for comparisons of avifauna assemblage structure between sites and years by Detrended Correspondence Analysis (DCA) using CANOCO version 3.11.5 (Jongman *et al.* 1995). Paired t-tests were used to determine differences

Table 1

Study site locations for avian observations. Mean annual rainfall (mm) and the rainfall of the three months preceding the sampling period approximated from data from nearest weather station (Australian Bureau of Meteorology – www.bom.gov.au/climate). Estimated area sampled (ha) determined from mean pedometer readings and 50m sampling width. Distance by road from Mundaring is also provided.

Site No.	Site Name	Longitude-Latitude	Annual Rainfall	Seasonal 2004	Rainfall 2006	Area (ha)	Distance (km)
1)	Mundaring	116° 11'E 31° 55'S	1050	330	108	15.0	0
2)	Mt. Observation	116° 31'E 31° 53'S	460	174	64	15.8	45
3)	Durokoppin	117° 31'E 31° 25'S	330	123	45	16.4	180
4)	Westonia	118° 41'E 31° 15'S	310	127	83	21.0	270
5)	Yellowdine	119° 39'E 31° 17'S	290	82	49	21.0	320
6)	Kurrawang	120° 25'E 30° 45'S	260	33	26	21.6	495
7)	Goongarrie	121° 10'E 29° 55'S	250	62	16	20.0	605
8)	Leinster	121° 45'E 27° 45'S	230	56	4	20.0	825

Table 2

Site No.	Name	Tree Layer ≥3m	Shrub Layer >10cm<3m	Litter/Ground ≤10cm	Flow 2004	ering 2006
1)	Mund <i>a</i> ring	Eucalyptus marginata Corymbia calophylla	Dryandra sessilis + many other spp.	Mostly covered by leaves, twigs	++++	+++
2)	Mt. Observation	E. wandoo E. accedens	<i>D. sessilis</i> + m <i>a</i> ny <i>o</i> ther spp.	Occasional litter, mostly exposed gravel	+++	++
3)	Durokoppin	E. salmonopholia E. loxophleba	Dryandra, Hakea Melaleuca, Allocasuarina	Scattered litter in w <i>oo</i> dlands, sparse in shrubs	+	-
4)	Westonia	E. transcontinentalis E. longicornis E. salubris	Melaleuca, Santalum Hakea, Allocasuarina	Some dense areas of leaves, twig, others sparse	++	-
5)	Yellowdine	E. salubris E. transcontinentalis	Scattered <i>Melaleuca</i> Hakea, Acacia	Sp <i>a</i> rse litter l <i>a</i> yer	+	++
5)	Kurr <i>awa</i> ng	E. lesouefii E. clelandii E. transcontinentalis	Acacia, Maireana Atriplex Melaleuca	Litter under trees, very sparse elsewhere	+++	+
7)	Goongarie	E. oleo <i>sa</i>	Acacia, Allocasuarina Triodia	Litter with mallees sparse elsewhere	+	-
3)	Leinster	E. gongylocarpa E. kingsmillii E. oldfieldii	Dodonea, Cassia Grevillea Triodia	Sparse litter, mostly under mallees	-	++

Characteristics of bird observation sites including dominant tree species, common genera of the shrub layer, important features of the ground layer, and subjective assessment of relative amounts of flowering.

in axis position for sites between years. Correlation analysis was used to compare the DCA site axis scores with a range of the geographic, environmental and avifauna data.

For each site, avifauna species turnover rate was determined between sampling years as T = 100[(d+a)/s], where "d" is the number of local departures (number of species not recorded at the site during the 2006 survey, but had been recorded during the initial 2004 survey), "a" is the number of local arrivals (number of species recorded at the site during 2006, but not recorded during the 2004 survey), and "s" is the total number of species observed at the site during both survey periods (Maron *et al.* 2005). Turnover rates between 1) the total, 2) sedentary and locally nomadic, and 3) migratory and nomadic species classes were compared by analysis of variance.

Results

Patterns of avian observations

A total of 92 species were recorded in the two surveys of the eight sites along the 625 km aridity gradient across south-west Western Australia (Appendix 1). Ten species were sighted only in 2004 and 14 species sighted only in 2006, with the remaining 68 species sighted during both survey periods. No species was recorded during both sampling years in all eight sites, however, the Weebill was sighted in 15 of the 16 samples and the Australian Ringneck and the Australian Raven were recorded in 14 of the 16 samples. Other widely occurring species recorded in at least 12 of the 16 samples were the Brown Honeyeater, Grey Shrike-thrush, Red Wattlebird, Striated Pardalote, Pied Butcherbird and the Yellow-throated Miner.

Although many were widespread, some species with low or high species DCA scores favoured the moister or drier ends of the aridity gradient. For example, the New Holland Honeyeater was the most commonly observed bird in the Jarrah forest study site at Mundaring, accounting for more than a quarter of the observations in both sampling years. Other species with predominant observation percentages in the Mundaring and Mt. Observation samples were the Red-capped Parrot, Western Spinebill, Scarlet Robin and Western Thornbill.

The most commonly observed birds of the central Wheatbelt and Goldfield woodlands sites were the widespread Red Wattlebird, Weebill, Australian Ringneck, Yellow-throated Miner and the Striated Pardalote, along with the more restricted regional species, the Chestnut-rumped Thornbill, White-eared Honeyeater and Yellow-rumped Thornbill. Species with high species DCA axis 1 scores were the commonly observed species recorded at the most arid end of the gradient. These included the Yellow-throated Miner, Crested Pigeon and Little Crow.

The first axis of the DCA site ordination, which explained 26% of the avifauna assemblage variation, separated the southwestern sites on the low score end of the axis and the northeastern sites on the high score end of the axis (Fig. 2). Sites of the central Wheatbelt tended

Figure 2. Sample positions on first and second Detrended Correspondence Analysis ordination axes.

to be in the central region of axis 1, but were separated with the Durokoppin samples at the lower score end of axis 2 and the remaining samples appeared sequentially as in their geographic position with increasing axis 2 scores. The second DCA axis explained a further 12% of the avifauna assemblage variation. The two DCA ordination axes also revealed that for each site the assemblage similarity between years was greater than between geographically adjacent sites. The difference between axis 1 scores for the same site between years was significantly less than the mean axis 1 scores between adjacent sites (paired t = 2.28, $p \le 0.05$). This was also true for DCA axis 2 values (paired t = 3.57, $p \le 0.01$).

Bird assemblage characteristics

Bird assemblage characteristics varied between years and sites (Table 3). Richness of the samples ranged from low values of 15 at the Leinster site in 2004 and 20 species at the Goongarie site in 2006 to highs of 31 species recorded at Durokoppin in 2004 and 35 species recorded in Mt. Observation in 2006. However, there was no relationship between site richness in 2004 and site richness in 2006 (correlation analysis r = 0.35, p > 0.05). The Shannon species diversity of avifauna samples ranged between 0.87 for the 2006 Goongarie sample and 1.30 for the 2006 Mt. Observation sample, but the diversities at each site in 2004 were not significantly correlated with those measured in 2006 at the same site (r

Table 3

Avian site richness, Shannon indices of diversity and evenness, and Simpson index of dominance values. Shannon diversity values with different superscript letters are statistically different at $p \le 0.05$ by the method of Hutcheson (1970).

	Location Name	Spec Rich		Dive	Shannon		nness	Simpso Domi	
		2004	2006	2004	2006	2004	2006	2004	2006
1)	Mundaring	23	32	1.11 ^{cd}	1.19 ^{ef}	0.83	0.79	0.12	0.11
2)	Mt. Observation	26	35	1.09 ^{cd}	1.30 ^g	0.77	0.84	0.12	0.07
3)	Durokoppin	31	32	1.24^{fg}	1.13 ^{de}	0.81	0.76	0.09	0.12
4)	Westonia	24	31	1.05°	1.25 ^{fg} •	0.76	0.84	0.13	0.08
5)	Yellowdine	29	34	1.19 ^{ef}	1.28 ^g	0.82	0.83	0.09	0.07
6)	Kurrawang	24	28	0.96 ^b	1.12 ^d	0.69	0.77	0.16	0.16
7)	Goongarrie	27	20	1.10 ^{cd}	0.87ª	0.77	0.66	0.12	0.27
8)	Leinster	15	25	0.96 ^b	1.09 ^{cd}	0.82	0.78	0.14	0.11

= 0.16, p > 0.05). Species diversities between years for individual sites showed statistically differences, however, overall diversity for 2004 was not different compared to 2006, as diversity increased at six sites in 2006, but decreased at two sites. As with the richness and diversity values, there were no overall differences between sampling years for evenness (r = 0.11, p > 0.05) and dominance (r = 0.22, p > 0.05). Also, sites, which ranked high in 2004, did not necessarily rank high in 2006 for richness (Spearman rank correlation r = 0.21, p > 0.05), diversity (r = 0.28, p > 0.05), evenness (r = 0.04, p > 0.05) or dominance (r = 0.30, p > 0.05). Although the DCA ordination indicated that the bird species composition changed between Mundaring and Leinster, the characteristics of richness, diversity, evenness and dominance between sites showed no gradient trends.

Species turnover between years averaged 45% for all birds, 40% for birds categorized as sedentary or locally nomadic and 60% for birds categorized as migratory or nomadic (Table 4). The degree of bird assemblage turnover of migratory and nomadic species was

Table 4

Bird assemblage species turnover between years at the eight sampling sites. Percentage turnover values for 1) all birds (All), 2) birds categorized as sedentary or locally nomadic (Sed/ LocNom) or 3) migratory or nomadic (Mig/Nom) are presented for the mean±se of all sites and for each site individually.

	Speci	es Turnover Perc	entage
Site	All	Sed/LocNom	Mig/Nom
All Sites – mean±se	44.9±3.4	40.0±4.3	59.1±7.3
1) Mundaring	42.9	26.1	75.0
2) Mt. Observation	50.0	51.9	46.2
3) Durokoppin	29.7	22.2	50.0
4) Westonia	42.9	33.3	63.6
5) Yellodine	34.2	37.0	33.3
6) Kurrawang	54.3	54.2	54.5
7) Goongarie	48.4	47.8	50.0
8) Leinster	57.1	47.8	59.1

statistically greater than the turnover of sedentary and locally nomadic species (ANOVA $F_{d,f=21,2} = 3.65$, $p \le 0.05$).

Gradient relationships

Variation in avifauna assemblage structure was most strongly related to annual rainfall (Table 5). Annual rainfall had a slightly higher correlation with the first DCA axis site scores than did the geographic separation from the western-most site to the other sites, measured as difference in the degrees of latitude and longitude. The correlation analyses also confirmed that there was no relationship between bird assemblage structure as defined by the DCA analysis with species richness, species diversity, evenness and dominance.

Avifauna assemblage structure was secondarily influenced by the presence of flowers as a food resource (Table 5). The second DCA axis of community variation showed this pattern with significant relationships with the percentage of observations of all the 14 honeyeater species to the total number of observation of all species and the number of members of the Meliphagidae observed in the site. The increase of locally nomadic honeyeater species into sites with high axis 2 scores led to a significant correlation between the number of honeyeaters and DCA axis 2 scores.

The generally drier conditions of 2006 compared to 2004 did not seem to influence bird assemblage variation, as there was no major division between sampling years on either of the two primary DCA axes. Rainfall in the three-month period just prior to sampling showed the same general pattern as the long-term annual rainfall totals for the sampling sites, although the correlation coefficient was less with the former variable.

Discussion

Gradient patterns

At continental scales, animal assemblages are generally more diverse in habitats that are more productive (Ricklets 1980). Tropical areas have more bird species than temperate areas and forests have more bird

Ta	bl	e	5

Correlations and level of probability with site DCA axis scores for selected geographic and environmental characteristics.

Characteristic	Axis 1	Prob.	Axis 2	Prob.
Annual rainfall (mm)	927	0.01	.001	n.s.
Site separation (degrees from Mundaring)	.833	0.01	.189	n.s.
3-month prior rainfall	745	0.01	185	n.s.
% Observations by spp. of the Honeyeaters	379	n.s.	.829	0.01
Turnover % of sedentary & loc. nomadic spp.	.299	n.s.	.582	0.05
Species diversity	287	n.s.	252	n.s.
Number of honeyeater species at site	283	n.s.	.742	0.01
Evenness	254	n.s.	230	n.s.
Species richness	.232	n.s.	.009	n.s.
Dominance	.209	n.s.	.157	n.s.
Turnover % of all species	.123	n.s.	.489	n.s.
Turnover % of nomadic and migratory spp.	.049	n.s.	181	n.s.
Total number of observations at site	039	n.s	.114	n.s.

species than deserts. In the Northern Hemisphere, bird species diversity within more limited geographic areas is strongly related to the structural diversity (primarily the number of vegetation layers) of the habitat (MacArthur & MacArthur 1961; Moss 1978; James & Wamer 1982). In Australia, there is less agreement regarding habitat factors affecting avian species composition, richness and diversity (Ford 1989; Woinarski et al. 1997). In a limited study from eastern Australia, Recher (1969) found that foliage height diversity was an important determinant of bird species richness. However, in a study of several Western Australian wandoo woodland habitats, Arnold (1988) found that vegetation structural diversity was not such a strong determinant of avian diversity and suggested that floristic diversity was a more important factor affecting avian diversity at the regional scale. In the present survey, even though there was a gradual change in species composition from Mundaring to Leinster, there was no general trend in site richness and diversity characteristics despite the survey extending more than 625 km in length. Although there was a general decrease in canopy tree height and density over the aridity gradient, our findings support the broad conclusions of Keast (1985) that eucalypt communities throughout Australia vary little in total avian species diversity.

Inter-annual variation

Although the species composition of sites was more similar between years than between that of adjacent sites, the general lack of correspondence in site richness between years found in this study has been recorded previously. Species richness of Victorian woodland sites measured in 1994-95 and again in 2001-02 was unrelated, although bird densities were almost three times higher in the second sampling (Maron et al. 2005). Large annual population fluctuations, local absences and local influxes may be common events, especially in arid Australian habitats (James et al. 1995). Maron et al. (2005) reported a higher turnover of migratory and nomadic species than more sedentary species. There was a similar statistical difference in bird assemblage turnover values between these two categories in our study. Honeyeaters appear to be particularly erratic and habitats with flowers have generally been associated with large increases in honeyeaters (Ford & Paton 1985; Brown & Hopkins 1996; Franklin & Noske 1999), but not always (French et al. 2003). The number of honeyeater species at a site and the proportion of observations of honeyeaters to all bird species at the site were major determinants in the species assemblage variation along the second DCA site ordination axis in our study.

Conservation of avifauna in the central Wheatbelt

As a consequence of the destruction of significant areas of central Wheatbelt vegetation, the avifauna of this region has also lost significant components (Kitchener *et al.* 1982; Saunders 1989; Lynch & Saunders 1991) with vegetation remnants now dominated by a core of widely distributed, abundant and often highly competitive bird species. The records of a number of bird species of this study also showed distributions that were discontinuous in the central Wheatbelt region. These included the Yellow-plumed Honeyeater, Black-faced Cuckoo-shrike, Rufous Treecreeper, Golden Whistler and Grey Currawong. These species have been previously listed amongst other species that are now rare or extinct in the central Wheatbelt (Saunders & de Rebeira 1991; Birds Australia Western Australia n.d.). Long-term, detailed work at Durokoppin Reserve and other Wheatbelt remnants attribute the loss of these species and a number of others to the loss of native vegetation to agriculture (Saunders 1989; Saunders & Curry 1990). Durokoppin Reserve, however, was a survey site with relatively high richness and species diversity in our study. Saunders & de Rebeira (1991) suggest that remnant native vegetation blocks within mostly cleared agricultural land are actually carrying more species than they are capable of supporting over the long term and further species extinctions will inevitably occur from this region.

Our study indicates that the central Wheatbelt study sites are not currently richer in bird species compared to the more completely vegetated areas to the southwest and northeast, but our records do highlight gaps in the continuous distribution of a number of species. Protection of the present woodland remnants is essential to maintain the current level of bird species diversity in this region of south-west Western Australia.

Acknowledgements: We appreciate the early comments of H. F. Recher and R. D. Wooller about the study and for improvements of the presentation. Three anonymous reviewers provided constructive comments to the original manuscript.

References

- Abbott I 1999 The avifauna of the forests of south-west Western Australia: changes in species composition, distribution, and abundance following anthropogenic disturbance. CALMScience Supplement 5: 1–176.
- Arnold G W 1988 The effects of habitat structure and floristics on the density of bird species in wandoo woodland. Australian Wildlife Research 15; 499–510.
- Beard J S 1990 Plant Life of Western Australia. Kangaroo Press, Kenthurst, New South Wales.
- Birds Australia Western Australia Inc. no date Birds of Central Wheatbelt – Cunderdin to Westonia. Bird Guides of Western Australia No. 18b. Birds Australia Western Australia Inc., Floreat, Western Australia.
- Brown E D & Hopkins M J G 1996 How New Guinea rainforest flower resources vary in time and space: implications for nectarivorous birds. Australian Journal of Ecology 21: 363– 378.
- Ford H A 1989 Ecology of Birds. Surrey Beatty & Sons, Chipping Norton, New South Wales.
- Ford H A & Paton D C 1985 Habitat selection in Australian honeyeaters, with special reference to nectar productivity. In: Habitat Selection in Birds. (ed M L Cody). Academic Press, London. 368–388.
- Franklin D C & Noske R A 1999 Birds and nectar in a monsoonal woodland: correlation at three spatio-temporal scales. Emu 99: 15–28.
- French K, Paterson I, Miller J & Turner R J 2003 Nectarivorous bird assemblages in box-ironbark woodlands in the Capertree Valley, New South Wales. Emu 103: 345–356.
- Hutcheson K 1970 A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology 29: 151–154.
- James C D, Landsberg J & Morton S R 1995 Ecological functioning in arid Australia and research to assist conservation of biodiversity. Pacific Conservation Biology 2: 126–142.

- James F C & Wamer N O 1982 Relationships between temperate forest bird communities and vegetation structure. Ecology 63: 159–171.
- Johnstone R E 2001 Checklist of the birds of Western Australia. Records of the Western Australian Museum Supplement No. 63: 75–90.
- Johnstone R E & Storr G M 1998 Handbook of Western Australian Birds. Volume I – Non-Passerines (Emu to Dollarbird). Western Australian Museum, Perth.
- Johnstone R E & Storr G M 2004 Handbook of Western Australian Birds. Volume 2 – Passerines (Blue-winged Pitta to Goldfinch). Western Australian Museum, Perth.
- Jongman R H G, ter Braak C J F & Tongeren O F R. editors. 1995 Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge.
- Keast J A 1985 Bird community structure in southern forests and northern woodlands: a comparison. In: Birds of Eucalypt Forests and Woodlands: Ecology, Conservation, Management (Keast A, Recher H F, Ford H & Saunders D, eds) Surrey Beatty & Sons, Chipping Norton, New South Wales. 97–116.
- Kikkawa J & Pearse K 1969 Geographic distribution of land birds in Australia-a numerical analysis. Australian Journal of Zoology 17: 821–840.
- Kitchener D J, Dell J & Muir B G 1982 Birds in Western Australian wheatbelt reserves-implications for conservation. Biological Conservation 22: 127–163.
- Lynch J F & Saunders D A 1991 Responses of bird species to habitat fragmentation in the wheatbelt of Western Australia: interiors, edges and corridors. In: Nature Conservation 2: The Role of Corridors (Saunders, D A & Hobbs R J, eds). Surrey Beatty & Sons, Chipping Norton, New South Wales. 143– 158.
- MacArthur R W & MacArthur J W 1961 On bird species diversity. Ecology 42: 594–598.
- Maron M, Lill A, Watson D M & Mac Nally R 2005 Temporal variation in bird assemblages: How representative is a oneyear snapshot? Austral Ecology 30: 383–394.
- Magurran A E 1988 Ecological Diversity and its Measurement. Princeton University Press, Princeton, New Jersey.
- Morcombe M 2000 Field Guide to Australian Birds. Steve Parish Publishing, Archerfield, Qld.

- Moss D 1978 Diversity of woodland song-bird populations. Journal of Animal Ecology 47: 521–527.
- Peet R K 1974 The measurement of species diversity. Annual Review of Ecology and Systematics 5: 285–307.
- Recher H F 1969 Bird species diversity and habitat diversity in Australia and North America. American Naturalist 103: 75– 80.
- Recher H F, Kavanagh J M, Shields J M & Lind P 1991 Ecological association of habitats and bird species during the breeding season in southeastern New South Wales. Australian Journal of Ecology 16: 337–352.
- Ricklets R E 1980 Ecology. Walton on Thames, Nelson.
- Saunders D A 1989 Changes in the avifauna of a region, district and remnant as a result of fragmentation of native vegetation: The Wheatbelt of Western Australia. A case study. Biological Conservation 50: 99–135
- Saunders D A & Curry P J 1990 The impact of agricultural and pastoral industries on birds in the southern half of Western Australia – past, present and future. Procedures of the Ecological Society of Australia 16: 303–321.
- Saunders D A & de Rebeira C P 1991 Values of corridors to avian populations in a fragmented landscape. In: Nature Conservation 2: The Role of Corridors (Saunders D A & Hobbs R J, eds). Surrey Beatty & Sons, Chipping Norton, New South Wales, 221–240.
- Saunders D A & Ingham J 1995 Birds of Southwestern Australia. An Atlas of Changes in the Distribution and Abundances of the Wheatbelt Avifauna. Surrey Beatty & Sons, Chipping Norton, New South Wales.
- Simpson K & Day N 2004 Field Guide to the Birds of Australia. 7th Ed. Penguin Books Australia Ltd., Ringwood, Victoria.
- Storr G M 1991 Birds of the south-west division of Western Australia. Records of the Western Australian Museum Supplement 35.
- Watson D M 2003 The 'standardized search': An improved way to conduct bird surveys. Austral Ecology 28: 515–525.
- Woinarski J C Z, Recher H F & Majer J D 1997 Vertebrates of eucalypt formations. *In:* Eucalypt Ecology – Individuals to Ecosystems (Williams, J E & Woinarski J C Z, eds). Cambridge University Press, Cambridge. 303–341.
- Woinarski J C Z, Tidemann S C & Kerin S 1988 Birds in a tropical mosaic: the distribution of bird species in relation to vegetation patterns. Australian Wildlife Research 15: 171– 196.

-
ix.
nd
pei
d
V

Species composition, total number of observation and percentage of observations for each site for each year sorted by DCA species axis 1 scores. Common names and scientific nomenclature from Johstone (2001), Johnstone & Storr (1998), (2004), Morcombe (2000) or Simpson & Day (2004), Status from Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders Status From Saunders & Ingham (1995), Morcombe (2000) and/or Simpson & Day (2004), S-Sedentary, L-Locally nomadic or microtocombe (2001), New York Status From Saunders Status From Saunders Status From Status From Saunders F

Security forum State 10 20 10 12 13 14	Sector correction M		Year of Observations Tatal Number of Observations	14 1	Mundaring 2004 2006		Mt. Obse 2004	Mt. Observation 2004 2006	Durokoppin 2004 2006	oppin 2006	Westonia 2004 2006	Yellowdine 2004 2006	Kurraw 2004 2	wang G	Goongarrie 2004 2006		Leinster 2004 2006		DCA
Profile Profile <t< th=""><th>Pyrinder proteine protein</th><th>Common Name</th><th>Scientific Name</th><th>= Status</th><th>7/0</th><th></th><th>661</th><th>476</th><th></th><th>519</th><th>403</th><th>336</th><th>494</th><th></th><th>64 24</th><th></th><th>313</th><th></th><th>,</th></t<>	Pyrinder proteine protein	Common Name	Scientific Name	= Status	7/0		661	476		519	403	336	494		64 24		313		,
Term Term <th< td=""><td>Inductoriants 5 63 0.05</td><td>New Holland Honeyeater</td><td>Phylidonyris novachollandiae</td><td>1</td><td>28.3%</td><td>25.6%</td><td>1</td><td>:</td><td> :</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Inductoriants 5 63 0.05	New Holland Honeyeater	Phylidonyris novachollandiae	1	28.3%	25.6%	1	:	:										
Anticipation Instant instant Instant instant In	Animolysis suprotises I 75% 35%	Red-capped Parrot	Platycerus spurius	S	6.3%	10.3%	·	· 0 7%	+	: ;	}	þ							112
Humanyana France 1 2 <th2< th=""> 2 2 <</th2<>	Hildseques Tentos S	Western Spinebill	Acanthorhynchus superciliosus	T	7.8%	10.6%	• ;	0.8%	•		ŀ	ŀ							105
Idlamporate Multimestic properties Sign properies Si	Millingeneration S	Scarlet Robin	Petroica multicolor		7.4%	35%	1 0%	0.0.0			þ	ŀ							107
Vitue Endinion 13		Western White-naped Honeveater	Melithrephis chloropsis	ı u	7 E0%	702 6	0/011	0/0.0	ŀ	þ	ŀ	þ							118
With the server intension server is a construction of the server is a construction server intension server intension server intensintententence intension server intension server intension s		Spotted Pardalote	Pardalotus muchanis		0/0000	0/ C.7	ŀ	7.1%	ł	þ	þ	þ						-29	116
		White-browed Scrib Wron	Contraction punctatus	Ζ.	3.3%		2	ł	ł	þ	ŀ	þ							ł
dekto Comproprise I 11% 0.5 0.5%	control Componential I 1.1.5 0.2% 0.3% 0.4 0.4 0.3% 0.4	Colden Whiteher	Sericomis frontalis	s S	ł	1.0%	0.5%	ł	ł	þ	ł	þ							76
control Componentianity functional N 37% 40% 57%		concert Willsuer	rachycephala pectoralis		1.1%	0.2%	0.5%	ł	þ	ŀ	þ	ł							76
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dilutr-Ullied Black Cockatoo	Calyptorhynchus latirostris	Z	3.7%	ŀ	4.0%	1	ł	þ	ŀ	þ							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		western wattlebird	Anthochaera lunulata	Z	1.5%	3.0%	2.0%	1.3%	ł	ł	ł	}							101
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Western Lhornbill	Acanthiza inomata	S	8.9%	3.5%	18.1%	5.7%	ł	ŀ	ŀ								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		bilvereye	Zosterops lateralis	M/N	0.7%	0.8%	1.5%	1.1%	}	;	:	. ;							114
		Laughing Kookaburra	Dacelo novaeguineae	S	0.4%	0.8%	0.5%	0.8%	•	•	•	ŀ							110
R Applia and/s 5	R Aquila milor 5 ~ ~ 0 % ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % ~ ~ ~ 0 % % %	Splendid Fairy Wren	Malurus splendens	S	2.2%	0.5%	6.5%	0.8%	- ;	•	ŀ	ŀ							114
B Tripping chiloptera 1 04% 55% 23%	R Triapport L 0.4% 3.5% 2.3%	Wedge-tailed Eagle	Aquila audax	S	}	0.8%		0.7%	. 70/	÷	ŀ	ŀ							117
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Common Bronzewing	Phaps chalcoptera	-	0.4%	3 50/2		0.7.0	0.4.0										124
		Brown Honeveater	Lichmera indistincta		700 4	0/0.0	11 10/	/0/ 0.7		0.7.0	0.7.0	1.8%							133
	Transment NN -10° -25° -10° -10	Rainbow Lorikeet	Trichodocene haematodue	a N	1 50/0	0/ 1/0	17.1 /0	0/1.11	3.0%	0.0%	þ	4.4%							170
	Preventer Privator NN \sim <th< td=""><td>Fan-tailed Cuckoo</td><td>Cacomantic Reholiferante</td><td>NINT</td><td>0/C.1</td><td></td><td>ŀ</td><td>þ</td><td>ŀ</td><td>ŀ</td><td>ķ</td><td>ŀ</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ł</td></th<>	Fan-tailed Cuckoo	Cacomantic Reholiferante	NINT	0/C.1		ŀ	þ	ŀ	ŀ	ķ	ŀ							ł
$ \begin{array}{ccccc} \mbox{Transmission} & Tran$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tawnv-crowned Honeyeater	Dhulidonurio malanono	NI/IN	ŀ	0.7%		2	ł	þ	þ	þ							ł
Constant mutaturation N \circ	constant N $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	vlistleton Bird	Discum binnediops	z	ł	10000	1.0%	1.3%	ŀ	þ	þ	þ							110
$ \begin{array}{cccccc} \mbox{transment} & $	$ \begin{array}{ccccc} Water contain parameter for the formation of $	Nestern Corella		z:	þ	0.7%	ŀ	ŀ	þ	ł	ķ	ţ.							130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	White-cheaked Honewestor	Cacatua pasunator	z.	ŀ	ŀ	k i	ŀ	0.5%	ŀ	1.7%								180
Inductorial numerical Autoprotrating M $$ 0.5% 20.1% 4.0% 6.3% 4.2% 0.2% $$ 0.8% $$ 0.8% $$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Trair Fantail	any number of the second second	_ : _	;-	ŀ	0.5%	10.3%	ł	þ	þ	ł							110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	arcy caman Arfous Whietlar	Mulpidura funginosa	Z :	1	0.8%	20.1%	4.0%	6.3%	4.2%	0.2%	1.5%							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Daintood Button amoil	r acnycepnala runventris	N I	ŀ	1.0%	1.5%	0.2%	þ	0.4%	ķ	þ							20
$ \begin{array}{c} \text{Commoting there} & \text{I} & \text{Commoting there} & \text{Commoting there} & \text{I} & \text{Commoting there} & \text{I} & \text{Commoting there} & \text{I} & \text{Commoting there} & \text{Commoting there} & \text{I} & \text{Commoting there} & \text{Commoting there} & \text{Commoting there} & \text{I} & \text{Commoting there} & \text{Commoting there} & \text{I} & \text{Commoting there} & Commoting the$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	artice Trace and all	Turnix varia	S	ŀ	ţ.	1.0%	þ	ŀ	ŀ	ķ	ŀ							2
$ \begin{array}{c} Cynnontima this end of the constraint of$	$ \begin{array}{c} Cymnonima lablem \\ Cymnonima lablem \\ Colluricical harmonica \\ S & 2.2\% & 0.5\% & 0.7\% & 0.8\% & & 0.6\% & 0.9\% & & 0.4\% & & & 2.4\% \\ Dapponosita trixposptra \\ S & 1.5\% & 0.8\% & & 1.1\% & 1.2\% & 1.2\% & 1.8\% & 0.8\% & & & & 3.1\% & \\ Petrochelidon nigricans \\ M & & & 2.5\% & 0.5\% & 0.2\% & 0.9\% & 1.4\% & 2.7\% & 0.6\% & & 0.4\% & & & 3.1\% & \\ Petrochelidon nigricans \\ M & & & 2.5\% & 0.5\% & 0.2\% & 0.9\% & 1.4\% & 2.0\% & 0.9\% & & & & 3.1\% & \\ Petrochelidon nigricans \\ S & & & 1.7\% & & 1.2\% & 1.2\% & 1.8\% & 0.8\% & & & 3.1\% & \\ Petrochelidon nigricans \\ S & & & 1.7\% & & 1.2\% & 1.2\% & 1.8\% & 0.8\% & & & & & & & & $	Australian Maania	Cumacteris ruta	S	ŀ	þ	1.0%	2.7%	þ	þ	ķ	0.9%							. 1
$ \begin{array}{rrrrr} \mbox{constrained harmonica} & \mbox{S} & \mbox{2.2\%} & \mbox{0.5\%} & \mbox{0.5\%} & \mbox{0.5\%} & \mbox{0.6\%} & & \mbox{1.0\%} & \mbox{0.8\%} & & \mbox{0.8\%} & \mbox{0.8\%} & & & & \mbox{0.8\%} & $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Tursu allan Magpie	Gymnorhina tibicen		ł	3.3%	1.5%	1.1%	0.7%	0.8%	ŀ	0.9%							Ęę
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rccccc} Duploconositia chrysoptera & S & 1.5\% & 0.8\% & 2.0\% & & 1.1\% & 1.2\% & 1.8\% & 1.8\% & 0.8\% & & & & 3.1\% & \\ Petrochelidon nigricans & M & & & 2.5\% & 2.0\% & 3.0\% & .$	diey Junke-unush	Colluricincia harmonica	S	2.2%	0.5%	0.5%	0.2%	0.9%	1.4%	2.7%	ŀ							; ;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} \mbox{rirectention ngricans} & M & & & 25\% & 82\% & 57\% & 40\% & 2.0\% & 3.9\% & & & & & & & & $	Varied Official	Dapnoenositta chrysoptera	S	1.5%	0.8%	2.0%	þ	1.1%	1.2%	1.2%	1.8%							10
Correspondenties S 1.2% 0.3% 0.6% 139 Anthochaera carmulata N 6.3% 4.5% 0.3% 0.6% 139 Anthochaera carmulata N 6.3% 4.5% 0.3% 0.4% 139 Anthochaera carmulata N 6.3% 4.5% 3.3% 5.4% 0.4% 150 Anthochaera S 1.5% 1.7% 1.81% 0.4% 17.2% 15.6% 3.8% 3.3% 155 212 Corvus cornoides L 0.7% 1.0% 1.1% 0.4% 150 213 222 Corvus cornoides L 0.7% 1.1% 0.2% 12% 13% 220 13% 220	NDerygone fuscaS $$ $$ 1.7% $$ 1.2% $$ 0.3% 0.6% $$ $-$	Mostom Concord	l'etrochelidon nigricans	X I	þ	þ	2.5%	8.2%	5.7%	4.0%	2.0%								2.54
Numochaera carunculata N 6.3% 4.5% 1.1% 0.4% 9.9% 4.5% 12.0% 8.1% 28.1% 13.8% 5.4% 0.4% -7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	And Worklohing	Gerygone fusca	S	þ	þ	þ	1.7%	ł	1.2%	þ	0.3%							3 5
N Artamus cyanopterus M 32% 10% 13% 13% 213 220 <t< td=""><td>N Artamus cyanopterus M 32% 12% 11% 16.4% 17.2% 15% 1.7% 1.8% 1.7% 1.6% 3.5% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%</td><td></td><td>Anthochaera carunculata</td><td>Z</td><td>6.3%</td><td>4.5%</td><td>ŀ</td><td>4.6%</td><td>1.1%</td><td>0.4%</td><td>9.9%</td><td>12.0%</td><td></td><td></td><td></td><td></td><td></td><td></td><td># I C</td></t<>	N Artamus cyanopterus M 32% 12% 11% 16.4% 17.2% 15% 1.7% 1.8% 1.7% 1.6% 3.5% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%		Anthochaera carunculata	Z	6.3%	4.5%	ŀ	4.6%	1.1%	0.4%	9.9%	12.0%							# I C
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Jusky Woodswallow	Artamus cyanopterus	M	ķ	þ	þ	3.2%	ŀ	}									797
Corvus coronoides S 0.7% 1.0% 1.5% 1.7% 0.9% 0.8% 4.7% 9.0% 0.5% 1.7% 2.12 2.2% 2.12 2.2%	Corrus cornoides 5 0.7% 1.0% 1.5% 1.7% 0.9% 0.8% 4.7% 0.0%	Australian Ringneck	Platycercus zonarius	S	1.5%	4.0%	2.0%	4.2%	18.1%	16.4%	17.2%	3 8%							330
shrike Coracina novaehollandiae L 0.8% 0.7% 0.4% 0.2% 1.8% 1.4% 0.6% 1.3% 2.20 Lichenostomus virescens N 1.0% 0.5% 1.1% 0.2% 0.5% 3.8% 0.9% 4.8% 2.9% 229 Lichenostomus ornatus L 2.5% 8.0% 2.5% 8.0% 2.9% 229 Lichenostomus ornatus L 2.5% 8.0% 2.5% 8.0% 3.8% 11.1% 19.0% 26.4% 2.9% 229 Cacatua roseicapilla S 1.5% 4.0% 0.2% 16.1% 19.1% 19.0% 10.2% 1.6% 2.50 Strepera versicolor S 0.4% 0.5% 1.5% 0.2% 3.3% 0.5% 0.1% 1.2% 1.4% 0.3% 0.9% 4.2% 2.57 Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.0% 1.2% 1.4% 2.7% 2.57 Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.0% 0.2% 0.3% 0.9% 2.50 Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.0% 0.2% 0.3% 0.5% 0.3% 0.5% 0.3% 0.5% 0.3% 0.5% 0.3% 0.5% 0.5% 0.5% 0.3% 0.5% 0.3% 0.5% 0.3% 0.5%	shrike Coracina novaehollandiae L 0.8% 0.7% 0.4% 0.2% 1.4% 1.2% 0.4% 0.2% 1.4% 0.6% 1.4% 0.6% 1.4% 0.6% 1.4% 0.6% 1.4% 0.6% 1.4% 0.6% 1.4% 0.6% 1.4% 2.5% 8.0% 2.5% 8.0% 3.8% 1.11% 19.0% 2.6.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.5% 0.2% 1.2% 1.4% 1.4% 1.4% 1.4% 1.4% 1.5% 0.2% 0.5% 1.5% 0.2% 0.5% 1.5% 0.2% 1.5% 0.2% 1.5% 0.2% 0.5% 1.4% 0.3% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.5% 0.2% 0.5% 1.2% 0.4% 1.5% 0.2% 0.5% 1.5% 0.2% 0.5% 1.5% 0.2% 0.5% 0.3% 0.5% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.6% 0.2% 0.4%	Australian Raven	Corvus coronoides	S	0.7%	1.0%	1.5%	1.7%	0.9%	0.8%	4.7%	8 5%					~		-80
Lichenostomus virescens N 1.0% 0.5% 1.1% 0.2% 0.5% 0.5% 0.2% 1.3% 2.20 activation of the second somatus L 2.5% 8.0% 2.5% 8.0% 2.5% 8.0% 2.5% 2.29 2.29 Lichenostomus ormatus L 2.5% 8.0% 2.5% 8.0% 2.5% 2.29 2.29 2.29 Cacatua roseicapilla S 1.5% 4.0% 0.2% 16.1% 19.1% 19.0% 26.4% 2.9% 2.29 8.0% 1.5% 10.2% 2.1% 2.5 0.5% 2.5 0.4% 0.5% 2.1% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5 0.4\% 2.5	Lichenostomus virescens N 1.0% 0.5% 1.1% 0.2% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0% 1.4% 0.0%	3lack-faced Cuckoo-shrike	Coracina novaehollandiae	Г	ł	0.8%	ł		0.7%	0.4%	2	0/0.0							108
Interpreter Lichenostomus ormatus L 2.5% 8.0% 2.9% 229 239 239 236 239 236 239 <td>Independent Lichenostomus ornatus L 2.5% 8.0% 3.8% 11.1% 9.0% 2.6.4% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% </td> <td>singing Honeyeater</td> <td>Lichenostomus virescens</td> <td>Z</td> <td>ł</td> <td>1.0%</td> <td>0.5%</td> <td>1.1%</td> <td>0.2%</td> <td></td> <td>0 5%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>202</td>	Independent Lichenostomus ornatus L 2.5% 8.0% 3.8% 11.1% 9.0% 2.6.4% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6%	singing Honeyeater	Lichenostomus virescens	Z	ł	1.0%	0.5%	1.1%	0.2%		0 5%						~		202
Cacatta roseicapilla S 1.5% 4.0% 0.2% 16.1% 19.1% 19.0% 10.2% 2. 1.1% 2.0% 2.0 16.% 2.50 Cacatta roseicapilla S 1.5% 4.0% 0.2% 16.1% 19.1% 19.0% 10.2% 2. 2.1% 2. 14.6% 4.2% 2.57 Rhipidura leucophrys L 0.4% 0.4% 0.4% 0.3% 269 Strepera versicolor S 0.4% 0.5% 1.5% 0.2% 3.3% 0.5% 0.4% 0.3% 269 n Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.3% 200 Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.3% 269 Petroica goodenovii N 1.5% 0.2% 3.3% 0.5%	Cacatta roseicapilla S 1.5% 4.0% 0.2% 16.1% 19.1% 19.0% 10.2% 1.1% 19.0% 14.6% Rhipidura leucophrys L 0.4% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6% 14.6%	Yellow-plumed Honeyeater	Lichenostomus ornatus	7	ł	þ	2.5%	8.0%		. ;		2 00/							243
Rhipidura leucophrys L 0.4% 0.6% 0.1% 1.4% 4.2% 257 18 Strepera versicolor S 0.4% 0.4% 0.6% 0.2% 0.3% 269 18 Strepera versicolor S 0.4% 1.2% 1.2% 1.4% 272 bin Petroica goodenovii N 1.5% 0.2% 272 272	Rhipidura leucophrys L 0.4% 14.6% Strepera versicolor S 0.4% 0.5% 0.6% 0.2% 14.6% 14.6% 14.6% 14.6% 14.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0	Galah	Cacatua roseicapilla	S	1.5%	4.0%	}	0.2%	16.1%	19.1%	19.0%	0/0.0							329
Strepera versicolor S 0.4% 0.5% 0.3% 269 n Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 1.4% 3.1% 2.72%	Strepera versicolor S 0.4% 0.5% 2.7% 4.8% 1.2% 1.4% 1.4% 3.1% n Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.3% 2.2% 1.4% 3.1%	Willie Wagtail	Rhipidura leucophrys	1	ŀ	þ	}	0.4%				0.6%					~		-10(
Petroica goodenovii N 1.5% 0.2% 3.3% 0.2% 3.3% 0.2% 2.7 0.2% 1.4% 3.1%2 272	Petroica goodenovii N 1.5% 0.2% 3.3% 0.5% 0.3% 2.2% 0.3% 2.2% 0.3% 2.2%	Jrey Currawong	Strepera versicolor	S	0.4%	0.5%	ł	ł	ł	• }	7.7%	1 7%							183
		ked-capped Robin	Petroica goodenovii	Z	ł	÷	ł	1.5%	0.2%	3.3%	0 5%					0/.			n l

		G				1001											102.1		0	
Yellow-rumped Ihornbill	Acanthiza chrysorrhoa	νu	ŀ	1 20/		12.00/	10.0% 1	3.7%	0.2% 1 0.1% 1	0.0%	2 %5.2	2.3% -	2	- 0/.6.		//	1.6%	702	3 8	
VV CEDIII	Sinicrothis previrosins	0	ŀ	0/ C.1	14.0 %	0/ 0.01											0/0110/0	1	ç	
White-fronted Chat	Epthianura albitrons	Z	þ	ŀ	þ	0.8%											ł		ł	
Chimming Wedgebill	Psophodes occidentalis	S	þ	þ	þ	þ											þ		ł	
Black-faced Woodswallow	Artamus cinereus	Z	ł	ŀ	ł	ł											ŀ		þ	
Western Yellow Robin	Eopsaltria griseogularis	L	ł	þ	ł	ł											ł		-192	
Jacky Winter	Microeca fascinans	Ļ	ł	ł	ł	÷											þ		-190	
White-fronted Honeyeater	Phylidonyris albifrons	Z	ŀ	þ	ŀ	÷											0.3%		401	
Elegant Parrot	Neophema elegans	Ц	ł	ŀ	ŀ	ŀ											ł		-147	
Striated Pardalote	Pardalotus striatus	Σ	ş	0.8%	ŀ	1.9%											ŀ		127	
Purple-gaped Honeyeater	Lichenostomus cratitius	Z	þ	þ	ŀ	ŀ											þ		281	
Inland Thornbill	Acanthiza apicalis	L	ł	0.8%	ŀ	ł											6 1.6%	.,	147	
White-eared Honeyeater	Lichenostomus leucotis	Ļ	ļ	ļ	ļ	l č											ļ	. ,	142	
Brown Falcon	Falco berigora	S	ļ	ļ	 ¦	ļ											ļ		ļ	
Horsfield's Bronze Cuckoo	Chrysococcyx basalis	Μ	l č	ļ	ļ	 c											 i		ļ	
Red-tailed Black-Cockatoo	Calyptorhynchus banksii	Z	 i	 T	 ť	 1											l r	 7	 7	
Peregrine Falcon	Falco peregrinus	Z	 	ļ 7	 	l r											1 F	 ť	1	
Australian Owlet-nightjar	Aegotheles cristatus	S	 r	l F													1 7	l 7	ļ	
Welcome Swallow	Hirundo neoxena	N/M	 ť	1 7	1	1											1 7		 	
Major Mitchell's Cockatoo	Cacatua leadbeateri	S	ļ	ł	1 7	ļ											1	•	ļ	
Australian Pipit	Anthus australis	L	 T	ļ	l r	1											ł		ļ	
Black-shouldered Kite	Elanus axillaris	S	ļ	ļ	 	ļ											1		ł	
Square-tailed Kite	Lophoictinia isura	L	ļ	ļ	l T	ļ											ļ		ł	
Pallid Cuckoo	Cuculus pallidus	Μ	ļ		ļ												ļ		326	
Purple-crowned Lorikeet	Glossopsitta porphyrocephala	Z	ļ	ļ	ļ	ļ											ļ		261	
Red Throat	Pyrrholaemus brunneus	S	l č	 ť	l č	ļ											 		55	
Blue-breasted Fairy Wren	Malurus pulcherrimus	S	ļ	 1	ļ												ļ		52	
Regent Parrot	Polytelis anthopeplus	Z	ļ		ļ	ļ											ļ		45	
Grey Butcherbird	Cracticus torquatus	L	ļ	ļ	0.5%	ļ											0		31	
Brown-headed Honeyeater	Melithreptus brevirostris	Ļ	l č	 T	ļ												ļ		154	
White-browed Babbler	Pomatostomus superciliosus	S	l č	 1	1	ļ											ļ		234	
Chestnut-rumped Thornbill	Acanthiza uropygialis	Γ	ļ	ļ	ļ	ļ											% 7.3%		55	
Spiny-cheeked Honeyeater	Acanthagenys rufogularis	Z	ļ	l č	ļ	l č											0.3%		231	
Hooded Robin	Petroica cucullata	S	ł	 	ŀ	 1*											ļ	385	232	
Pied Butcherbird	Cracticus nigrogularis	S	ļ	ļ	1	ļ											% 3.2%		25	
Yellow-throated Miner	Manorina flavigula	Γ	ļ	ļ	ļ	ļ											% 20.1%		144	
Mulga Parrot	Platycercus varius	S	1	l č	ļ č	l č											%		-55	
Magpie Lark	Grallina cyanoleuca	S	1	ļ	ļ	ļ											2.6%		172	
Crested Pigeon	Ocyphaps lophotes	S	ļ	l č	 .'	 F											14.4%		182	
White-winged Triller	Lalage tricolor	Μ	ļ		ļ												ļ		ł	
Little Eagle	Hieraaetus morphnoides	S	l č		ļ	l i											ł		ļ	
Brown Goshawk	Accipiter fasciatus	L	 1	1	ļ	ļ											1		ļ	
Slender-billed Thornbill	Acanthiza iredalei	Γ	ļ	ļ	ļ	l č											1		ł	
Chestnut-breasted Quail-thrush	Cinclosoma castaneothorax	Γ	1	ļ	ļ	l i											ł		ŀ	
Nankeen Kestrel	Falco cenchroides	s	ļ	1 2		ŀ											%	ļ	ļ	
Crested Bellbird	Oreoica gutturalis	S	ļ	ļ	 r	l č									.6% 1.3%	%	- 1.6%	453	141	
Little Crow	Corvus bennetti	S	ļ	ļ	ļ	ļ											% 16.6%	472	80	
Western Bowerbird	Chlanydera guttata	S	ł		1 *	l č											- 0.3%	ľ	ļ	
Red-backed Kingfisher	Todiramphus pyrrhopygia	Z	l č	l ř	 ř	l č											. 0.6%	1	l č	